CLOSE AND OPEN TASK AUTHORSHIP ATTRIBUTION: A COMPUTATIONAL AUTHORSHIP ANALYSIS
نویسندگان
چکیده
منابع مشابه
Computational methods in authorship attribution
Statistical authorship attribution has a long history, culminating in the use of modern machine learning classification methods. Nevertheless, most of this work suffers from the limitation of assuming a small closed set of candidate authors and essentially unlimited training text for each. Real-life authorship attribution problems, however, typically fall short of this ideal. Thus, following de...
متن کاملAuthorship Attribution
Authorship attribution, the science of inferring characteristics of the author from the characteristics of documents written by that author, is a problem with a long history and a wide range of application. Recent work in “non-traditional” authorship attribution demonstrates the practicality of automatically analyzing documents based on authorial style, but the state of the art is confusing. An...
متن کاملUnsupervised authorship attribution
We describe a technique for attributing parts of a written text to a set of unknown authors. Nothing is assumed to be known a priori about the writing styles of potential authors. We use multiple independent clusterings of an input text to identify parts that are similar and dissimilar to one another. We describe algorithms necessary to combine the multiple clusterings into a meaningful output....
متن کاملAutomatic Authorship Attribution
In this paper we present an approach to automatic authorship attribution dealing with real-world (or unrestricted) text. Our method is based on the computational analysis of the input text using a text-processing tool. Besides the style markers relevant to the output of this tool we also use analysis-dependent style markers, that is, measures that represent the way in which the text has been pr...
متن کاملCross-Language Authorship Attribution
This paper presents a novel task of cross-language authorship attribution (CLAA), an extension of authorship attribution task to multilingual settings: given data labelled with authors in language X , the objective is to determine the author of a document written in language Y , where X 6= Y . We propose a number of cross-language stylometric features for the task of CLAA, such as those based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PARADIGM
سال: 2019
ISSN: 2622-8653
DOI: 10.18860/prdg.v2i1.6704